Roll No. :

Half Yearly Examination 2019-20

Class: 12

BSE-860

Subject: Mathematics

Time: 3.15 Hours

M.M. : 70

Note: (i) All Questions are Compulsory.

- (ii) Write the answer to each question in the given answer book only.
- (iii) There are internal choice bewtween Q. No. 16, 24, 28 and 30 you have to attempt only one if the alternatives in these questions.

 (iv) Section
 Q. No.
 Marks

 A
 1-15
 1

 B
 16-25
 3

 C
 26-30
 5

PART-A

- 1. If $\tan^{-1}(1) + \cos^{-1}\left(\frac{1}{\sqrt{2}}\right) = \sin^{-1} x$ then find the value of x.
- 2. Find the devivative of $\sin x^{\circ}$.
- 3. Find the value of the integrates $\int \cot^2 x dx$.
- 4. Find the value of the following integrate $\int_0^\infty \frac{\sin(\tan^{-1} x)}{1+x^2} dx$.
- 5. Integrate with respect to x:

$$\frac{1}{\sqrt{9-25}x^2}$$

6. Integrate the following with respect to x:

$$\frac{e^{\sqrt{x}}.\cos e^{\sqrt{x}}}{\sqrt{x}}$$

Find the area enclosed by curve $y=2\sqrt{x}$ and x=0, x=1.

Solve the following Difference equations:

$$\frac{dy}{dx} = e^{x-y} + x^2 e^{-y}$$

Find the order and degree of the following differential equation:

$$y = x \frac{dy}{dx} + \frac{a^2}{\frac{dy}{dx}}$$

- 10. Find the projection of the vector $4\hat{i} 2\hat{j} + \hat{k}$ on the vector $3\hat{i} + 6\hat{j} - 2\hat{k}$.
- 11. Find the perpendicular unit vector of the vectors $\hat{i} 2\hat{j} + \hat{k}$ and $2\hat{i}+\hat{j}-3\hat{k}.$
- 12. Find the equation of the line parellel to the vector $2\hat{i} \hat{j} + 3\hat{k}$ and pass through the point (5, -2, 4).
- 13. If a vector makes angles of α , β and γ with the OX, OY and OZ axis respectively, then prove that :

$$\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 2$$

14. Find the solution of differential equation :

$$e^{-x+y} \cdot \frac{dy}{dx} = 1$$

15. If the coordinates of P and Q are (3, 4) and (12, 9) respectively, then find ∠POQ, where O is origin.

PART-B

16. If $f \in \mathbb{R} \to \mathbb{R}$ such that f(x) = ax + b, $a \neq 0$ then prove that f is a bijection. Also find f. OR

OR
Find
$$f^{-1}$$
, Such that $f : A \rightarrow B$, $A = \{0, +1, -3, 2\}$, $B = \{-9, -3, 0, 6\}$ and $f(x) = 3x$ (if exists)

17. If
$$\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \frac{\pi}{2}$$
 then prove that $xy + yz + zx = 1$.

18. If
$$A = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$$
 then prove that $A^n = \begin{bmatrix} \cos n\alpha & \sin n\alpha \\ -\sin n\alpha & \cos n\alpha \end{bmatrix}$.

- 19. Find the value of determinant $\begin{vmatrix} \frac{1}{a} & a^2 & bc \\ \frac{1}{b} & b^2 & ca \\ \frac{1}{c} & c^2 & ab \end{vmatrix}$.
- 20. Show that $A = \begin{bmatrix} 2 & -3 \\ 3 & 4 \end{bmatrix}$ satisfies the equation $A^2 6A + 17 = 0$. Thus find A^{-1} .
- 21. Examine for differntiability of the function f(x) = |x 1| + |x| at x = 0, 1.
- 22. If $y = a \cos nx + b \sin nx$ then prove that $\frac{d^2y}{dx^2} + n^2y = 0$.
- 23. Integrate of $\frac{1}{\sqrt{5x-6-x^2}}$ with respect to x.
- 24. Find the area enclosed by ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$, and lie above the x axis.

OR

Find the area of the region in the first quadrant enclosed by the para bola $y^2 = 4ax$ and line y = x.

Solve the following differential equation $(x+y) = \sin^{-1}\left(\frac{dy}{dx}\right)$.

PART-C

- 26. A ladder 13m long leans against a wall. The foot of the ladder is pulled along the ground away from the wall, at the vate of 1.5 m/sec. How fast is the angle θ between the ladder and ground is changing when the foot of the ladder is 12 m away
- 27. For curve $y = \sin^2 x$, find the equation of normal at $\left(\frac{\pi}{3}, \frac{3}{4}\right)$.
- 28. Show that for any vector \vec{a} , $|\vec{a} \times \hat{i}|^2 + |\vec{a} \times \hat{j}|^2 + |\vec{a} \times \hat{k}|^2 = 2|\vec{a}|^2$.

If $\vec{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{c} = 3\hat{i} + 3\hat{j}$ such that $\vec{a} + \lambda \vec{b}$ is perpendicular on \bar{c} , then find the value of λ .

29. Solve the following linear programming problems by graphical method:

Minimize

$$z = 3x + 5y$$

Subject to the constraints

$$x + 3y \ge 3$$

$$x + y \ge 2$$

and

$$x \ge 0$$

$$y \ge 0$$

30. Show that the line $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $\frac{x-4}{5} = \frac{y-1}{2} = z$ intersects. Find their point of inter section.

OR

Determine the value of m if line $r = (\hat{i} - 2\hat{j} + \hat{k}) + \lambda(2\hat{i} + \hat{j} + 2\hat{k})$

is parallel to the plane $\vec{r} \cdot (3\hat{i} - 2\hat{j} + m\hat{k}) = 3$.